Steam reforming of methanol on PdZn near-surface alloys on Pd(1 1 1) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS
نویسندگان
چکیده
The CO2-selectivity in methanol steam reforming was investigated for a "multilayer" PdZn 1:1 surface alloy (thickness of ~1.3 nm) and for a subsurface-Zn diluted "monolayer" PdZn surface alloy, both exhibiting a 1:1 composition in the surface layer. Despite having almost the same surface layer stoichiometry, these two types of near-surface alloys exhibit different corrugations and electronic structures. The CO2-selective multilayer alloy features a lowered density of states close to the Fermi edge and surface ensembles of PdZn exhibiting a “Zn-up/Pd-down” corrugation, acting as bifunctional active sites both for reversible water activation as ZnOH and for reaction of methanol (via formaldehyde + ZnOH) toward CO2. The thermochemical stability limit of the multilayer alloy at around 573 K was determined in-situ at elevated pressures of water, methanol and CO, applying in-situ XPS, PM-IRAS spectroscopy, LEIS and AES. Above 573 K, the coordination of the surface 1:1 PdZn layer with subsurfaceZn gradually decreased by bulk diffusion of Zn “escaping” from the second and deeper layers, resulting in a transition from the CO2-selective PdZn "multilayer" state to the unselective "monolayer" state, which only catalyses methanol dehydrogenation to CO.
منابع مشابه
PdZn/Pd(111) surface alloys as model catalysts for methanol steam reforming
Pd supported on ZnO has recently raised great interest as a catalyst for methanol steam reforming. Different from unsupported Pd, Pd-ZnO shows high selectivity and good conversion towards CO2 and hydrogen [1]. The difference is attributed to the formation of a PdZn alloy under reaction conditions, but there is still limited knowledge on the exact surface structure/composition and reaction mecha...
متن کاملCO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy
In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa.Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic ...
متن کاملSupport Crystal Plane Effects in the Steam Reforming of Alcohols on Pd/ZnO and Co/ZnO
Introduction The steam reforming of alcohols, particularly methanol and ethanol, presents a promising method of producing hydrogen. Due to its high activity at relatively low temperatures, Pd/ZnO has received attention as a methanol steam reforming (MSR) catalyst to produce H2 at very high CO2 selectivity. 1 Pd supported on most other materials dehydrogenates methanol to CO. Similarly, Co catal...
متن کاملIn situ XPS study of methanol reforming on PdGa near-surface intermetallic phases
In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503-523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase....
متن کاملWhere does methanol lose hydrogen to trigger steam reforming? A revisit of methanol dehydrogenation on the PdZn alloy model obtained from kinetic Monte Carlo simulations.
Pd/ZnO is a promising catalyst studied for methanol steam reforming (MSR) and the 1 : 1 PdZn alloy is demonstrated to be the active component. It is believed that MSR starts from methanol dehydrogenation to methoxy. Previous studies of methanol dehydrogenation on the ideal PdZn(111) surface show that methanol adsorbs weakly on the PdZn(111) surface and it is hard for methanol to transform into ...
متن کامل